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Preface 

This script describes the DataSpriteLibrary with Snap! blocks, which is intended for (rela-

tively) fast processing of large amounts of data. "Large" data volumes are almost never 

used in schools and initial university education - because they were hardly freely available 

some time ago, and money is scarce in education. In the meantime, however, there are 

large amounts of data in abundance, be it as a data collection on the Internet or as image 

files, because they are also "large". Education thus has the chance to deal with relevant 

data and thus find numerous points of contact with the field of "computer science and 

society". In the long run they are more important than any programming tricks in terms of 

general education. 

Especially for beginners it is important to "see" what they are doing with their program-

ming attempts. Snap!'s fantastic visualization capabilities are complemented by the 

DataSpriteLibrary, which includes library functions for graphics and images that, like the 

Snap! tables, quickly display the results of operations. Speed is important in this area be-

cause it supports experimental work in trial and error style. If you must wait too long, you 

won't try that much. The DataSpriteLibrary supports this approach by implementing most 

time-critical functions in JavaScript. Besides, these blocks also show how text-based pro-

gramming can be senseful integrated into a graphical development environment. 

The DataSpriteLibrary contains blocks from the area of data visualization and table han-

dling, which is supported by the introduction of the data type table. In addition, functions 

of linear algebra with the data types vector and matrix, the solution of linear systems of 

equations and interpolation by polynomials are available. Image operations can be per-

formed quickly using kernels as well as vector and matrix blocks. The examples show how 

this can be done. But they always show only one way - invent others and better ones for 

yourself! 

This book is a translation from German. Unfortunately, I do not speak English well, so it will 

be bumpy. I apologize for that. Be strong and hold it! Many thanks for the wonderful help 

of the DeepL1 translation program. I would probably never have finished without these. 

I would like to thank Jens Mönig and Rick Hessman very much for their support and the 

numerous discussions. 

Otherwise, I hope you enjoy working with Snap! and the DataSpriteLibrary! 

 

 

Goettingen, 6 August 2019 

 

 

 

 

 
1 https://www.deepl.com/translator 
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1 Artificial Intelligence and School 

The term "artificial intelligence" is currently and for the foreseeable future more than cur-

rent. In Germany, the Year of Science 2019 has been declared the "Year of Artificial Intelli-

gence". In the field of "digitalisation", the term is shaping discussions in the media, busi-

ness and politics. Informatic didactic contributions are also increasingly being made on the 

subject. 

In school informatics the topic is not really new. For three to four decades now, there have 

been examples of neural networks (NNs) suitable for use in schools, for example, which 

are developed and trained by the pupils themselves [Baumann] [Modrow1]. Such networks 

are clear and easy to understand, encourage students to work independently and then to 

discuss philosophical implications based on their professional experience [Modrow2]. 

Above all, however, they are small. This is exactly the difference to the current NNs: they 

are big. According to Ian Goodfellow [Deep Learning], one of the leading developers in this 

field, basically nothing has changed compared to the old small networks. The structure and 

methods have (almost) remained the same, but of course they have been improved. What 

has changed is the performance of the computers on which the NNs run and the amount 

of data available to train them. This, however, leaves older findings valid, such as Marvin 

Minsky's [Minsky] 1967 findings on the equivalence of NNs and finite automata. The result 

is no wonder, because the model of finite automata has its roots in the first NNs.  

The suggestions for treating large NNs in class often consist of training finished NNs using 

finished training data. Students then watch the net learn, slowly improving its results. Ac-

tually, you don't need a real NN for this experience, a video was enough. You can't see that 

the net is big and you can't see why this size is important from watching it. All you can see 

is that the results are improving. You don't learn anything from this experience alone from 

NNs. A discussion of the effects of NNs then is based on the information that they exist and 

that they can learn. Further technical basics are missing, so that this discussion could take 

place just as well in other subjects. 

Let us compare the situation with an example from physics. The relatively new image of a 

black hole [SZ] shows that there are black holes and that they "swallow" matter. However, 

this information alone does not integrate the topic into the physics lesson, because a tech-

nical treatment of black holes is largely beyond the possibilities of the school. But within a 

subject area "gravitation", which contains numerous activities, historical and social refer-

ences, typical problems of school physics, etc., the picture links school physics with "sci-

ence after school", shows ways to a more profound occupation with it and, for example, 

encourages reflection on whether the learners see a personal perspective in this area - or 

not. 

What do we learn from this? 

The pure introduction of new technologies has no place in school - there are other channels 

for shows. The pure information that such technologies exist is also not enough to assign 

the topic to a specific subject. On the contrary, if you limit yourself to that, then it would 

be better to locate subjects in which, for example, the social or philosophical effects are 

discussed, and the topic is thus networked with other aspects. Only the didactic reduction 
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of a question to a complexity level, on which the learners can work as independently and 

imaginatively as possible, makes the topic pedagogically fruitful. 

In the field of artificial intelligence, it is not the passive observation of the learning 

of networks in schools that is important, but the active promotion of the understand-

ing of human learners for the fundamentals and implications of this process. 

One more note: If the school concentrates on conveying facts and data and practicing the 

application of calculae, then in my opinion this presupposes that the learners are not able 

to discover and understand connections and backgrounds themselves. The procedure 

therefore promotes immaturity. And even worse: it keeps learners in immaturity because 

they learn one thing for sure: that they are not expected to think for themselves. 
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2 Machine Learning 

The term "machine learning" is often used as a synonym for "artificial intelligence" or "neu-

ral networks". However, this limitation is not true. For example, the definition found on 

the SAP page [SAP] is more precise: 

Machine learning technology teaches computers to perform tasks by learning from 

data instead of being programmed for the tasks. 

"Learning from data" can be understood as adapting the parameters of a function. A data 

set (image, table, character string, ...) is presented as input vector E to a machine. It calcu-

lates an output value k from this, which assigns the input to a category ("It is a cat", "Fea-

ture present" (or not), "The word 'car'", ...). 

𝑓(𝑬) = 𝑘 

This assignment can take place in very different ways. For example, you can adjust the 

parameters of a polynomial, search for similar input values ("k-next neighbours"), work 

with decision trees, use Bayesian filters, ... - or even train an NN. All these methods have 

in common that the "machine" contains a set of parameters that can be changed. The ma-

chine "learns from data" by repeatedly reading in a data set, calculating the output value 

from this using the current parameter set, and then comparing this output with the "de-

sired" output value using some method. If there is a deviation, it changes the parameters 

so that the output at least approaches the "desired" value. "Desired" values may be known 

in advance ("The image is a cat image"), may come from outside e.g. from a "trainer" ("su-

pervised learning") or may be generated by the machine itself ("unsupervised learning"), 

e.g. by extracting features from many training data ("clustering"). In all cases, the machine 

does not "learn" anything, but adapts parameters according to a given procedure. 

This approach, too, has long been widespread in schools. "Learning Nim-games” etc. can 

already be found in the first computer science textbooks. What is new again is the scope 

of the required training data. A large NN can have billions of parameters that need to be 

trained - and this requires "a lot of" training data. Another new feature is that these data 

are available on the net. So, if applications available "for free" are paid "with data", then 

we now also know how and why this happens. 

If you look at common textbooks on machine learning [Grus] [Albon], you won't find much 

about NNs, but a lot about data handling. These have to be normalized, for example, in 

order to make the many input data, which can come from very different sources, compat-

ible. For example, if we photograph many dogs with an older digital camera and many cats 

with a newer one, then an NN would very likely learn from these images that dog images 

are smaller than cat images. 

The preparation of data now is a very manual activity. It can be done step by step, tested 

and then automated with simple algorithms. Testing is greatly facilitated if the structure of 

the data is easy to visualize, e.g. in tables or as a graph. And algorithms are simple if they 

have a clear structure, e.g. if, after some preparation steps, they consist of a loop in which 

some alternatives with the corresponding instructions are enumerated. The power of the 

developed scripts does not depend so much on the algorithmic structure as on the power 

of the available commands. Or vice versa: if you have enough powerful commands, you 
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can do a lot with simple programs. The parameters then can be adjusted in one of the usual 

ways. If the appropriate tools are available, the preparation of data is a very suitable topic 

for schools. The DataSprite is intended as such a tool. 
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3 The Structure of the DataSprite 

The structure of the DataSprite is based on the idea of documented data sets consisting 

of two parts: the metadata, which describes the structure and context of the data (e.g. 

number format, image dimensions, recording device, recording date, ...) and the associ-

ated pure data segments. Metadata usually consists of dictionaries - names with assigned 

values (e.g. "Recording date: 24.12.2018").  Examples for this structure are FITS files [FITS], 

which are standard in astrophysics but are also used in the Vatican Library, or JPEG images 

from mobile phones. Also, here there are meta data (image size, compression degree, date 

of acquisition, often also GPS coordinates). Without these an image generation would not 

be possible. It is important that the image generation does not change the original data. 

We adapt this structure by giving a DataSprite three local variables containing the data 

(myData), the data description (myProperties) and the current costume (myCostume). 

These variables can be filled by importing data from different sources (SQL queries, text 

file, CVS file, JSON file, FITS file, direct assignment, ...), whereby the properties myProper-

ties have to be adapted to the respective data. With the help of these properties, data can 

be converted into graphical representations (graph, data plot, histogram, image, ...), 

whereby either myData or another suitable table is selected as source. Because tables can 

be displayed very nicely in Snap!, this display format is not additionally implemented. 

Therefore, the data type table is implemented with many of the operations commonly 

used in data science (table operations, correlation calculation, affine transformations, solv-

ing linear systems of equations, ...), which can handle larger amounts of data sufficiently 

quickly. 

The overall structure is as follows:   

 

 

 

 

 

 

 

 

 

 

 

 

DataSprite 

 

imports data from … 

• FITS-files 

• Text- files 

• SQL- queries 

• JSON- files 

• CSV- files 

• … 

DataSpriteLibrary

 

provides blocks 

for the graphical 

representation 

of data, for edit-

ing tables, solv-

ing equation sys-

tems, statistical 

operations, ... 
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4 Working with the DataSpriteLibrary 

4.1 Creating DataSprites 

When we work with data and graphics, it makes sense to use multiple DataSprites at the 

same time. If we already have one, we can create more by cloning or copying. Of course, 

we also copy the remains of the previous work (variables, new blocks, ...), and perhaps the 

three local variables of the sprite are missing, are named differently, ... There are many 

possible errors. To avoid that, there is a new reporter block new (temporary?) DataSprite 

in the Commands palette. It creates a new sprite, either perma-

nent (visible in the sprite coral) or temporary (it is automatically 

deleted when the red button is pressed or when Snap! is closed). The block is a reporter 

because the new sprite has to be accessed from outside very often. You should save a 

reference to it in a variable. 

Example: A FITS file (source: [HOU]) is read in and displayed on a new DataSprite. 

 

4.2 Importing data 

Snap! can import a variety of data formats directly. This can be done by dropping files onto 

the Snap! window or by right-clicking on a variable watcher to import them. Both works 

well with text, CSV and JSON files. Other text file formats like FITS can also be imported in 

this way, asking if they are serious. Exporting works in the same way. If you want to do the 

same by programs, use the reporter block read file with filepicker. A file manager window 

appears in which you select the file as usual. Then the data will be imported. 

The main task afterwards is to assign this data to the myData 

variables and set the corresponding properties in myProperties. 

This is done by the following block, which imports data from out-

side into the myData area. This can be FITS data, table data or 

the data of the current costume. This is stored as a table of RGB 

values. 
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Example: An image (source: [NASA]) is saved and re-displayed with false 

colors. 

 

Example: Almost 600 000 data records from a CSV file are read in about 10 seconds. The 

properties are set. 

 

 

Example: SQL-Import 

If we have access to a SQL 

server, then we can also read 

data from there. In our case 

we import a SQL server 

sprite and the library with the 

SQL blocks [SQL] into a Data-

Sprite. Then we ask the SQL 

server to establish a connec-

tion to a school database. 

From this we would like to 

query the names, the gender 

and the middle grade of Eng-

lish. This will give us a list of 

strings containing these data - 

separated by commas. So, we 

have to convert the list entries 

into sublists and enter them 

into a table. After that we can 

import these in the sprite. 
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Example: JSON-Import 

The easiest way is to simply "drop" a JSON file into the Snap! window. But it can also be 

automated. First of all, we look for interesting JSON data and of course choose the statistics 

of baby names in New York City - what else? The suitable block is again import <table 

data> from <read file with filepicker> to myData. The result is a list with two columns 

and two rows, the metadata and the actual data. Because we are interested in them, we 

replace the original data with the element (2|2) of the table. From the many columns we 

copy the three interesting ones into a new table, add column headings and import the 

result back into myData. 

 

The result: 19419 baby names. 

Who would have thought! 

4.3 Exporting data 

The export again can be done directly from a variable watcher. For scripts there 

are two new blocks export <table> to CSV file <filename> and write string 

<string> to file <filename>. As usual in Snap!, the results will be saved in the 

download folder of the browser. The two blocks allow you to automate data ex-

change with spreadsheet programs or text files, for example to save data pro-

cessing results. 
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4.4 Importing data with the mouse 

In many cases it is advantageous to read data using the mouse. The <...> by 

mouse block is available in the Sensing palette for this purpose. It can be 

used to determine image values, image coordinates, coordinates in the coor-

dinate system used for graphs and/or data points, the data on a slice through 

the image, start and end points of a line, center and radius of a circle and the 

summed screen values together with their number in a circle. As an example, 

a section through a moon image is shown. 

Example: Slice through an image (Source: [HOU]) 

 

 

 

 

 

Example: Measuring the sum of the image values within the radius (Source: [HOU]) 
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4.5 More blocks in the Sensing palette 

The following blocks can be used to read or set the image 

value at a position or the corresponding pixel value of the 

costume. The penultimate block is used for conversions 

between the coordinate systems. The brightness in the 

periphery of a point can be determined with the last 

block. 

 

 

 

4.6 The properties of the DataSprite 

The Looks palette contains several blocks for displaying data on 

the DataSprite. They use the myProperties settings for value 

ranges, colors, sizes and line types, axis labels, and so on. These 

can be set to initial values with the set properties block and dis-

played directly as a Snap! table. If you are satisfied with them (as 

in the previous examples), you can draw graphics directly onto 

the DataSprite. Otherwise you must change the settings. This 

can be done directly with the two blocks for reading property 

values property <property> and for writing set property <prop-

erty> to <value>. A typical use case would be to enter the range 

of the image values - if this has not already been done automati-

cally. 

 

 

 

This can be done somewhat 

more comfortably with the 

blocks that combine groups of 

properties - for setting or read-

ing. The second simplifies the 

call of JavaScript functions be-

cause the number of parameters 

is somewhat limited.  
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4.7 Graphics on the DataSprite 

Graphics can be superimposed on DataSprites. As an example, a data plot can be used for 

which an approximation function is sought. You can experiment with it until you are satis-

fied with the result. If the image is "full", you simply draw a new one. 

First of all you need a DataSprite. Size and 

background color can be set to make everyone 

happy. While we're at it, we also specify a chart 

title and axis labels. Since these require space on 

the diagram, the offsets are set so that the pure 

diagram area is slightly reduced. If required, we 

can also display them with attributes <offsets>. 

Next we use the block add graph <term> to draw 

a function graph. As term we can pass either a 

Snap! operator (ringified so that it is not executed 

before the call!) or the coefficient list of a polyno-

mial. Further graphs - here: the derivative - can fol-

low. The drawing of the axes and the labels is done 

by the block add scales. 

 

 

Of course, we can also create a new DataSprite 

instead and tell it what to draw.   
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If we want to display the contents of a data table graphically, this can be done with the 

block add dataplot number/number. Scales and labels are supplemented again with the 

block add scales. The type of display can be adjusted very precisely with the block set 

datapoint attributes .... 

 

 

Example: A data set is represented with the corresponding 

regression line in a DataSprite. 

 

 

 

Histograms can be generated and displayed directly from data sources. 

Example: A FITS image is loaded, the normalized distribution of the image values is dis-

played as a histogram on a new DataSprite. 
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In addition, the Looks palette contains six blocks for drawing basic structures on the sprite 

surface (not on stage). 

 

 

 

 

 

 

4.8 Working with DataSprite tables 

Because Snap! can display tables (lists of lists) so well (right click on the 

variable watcher, open in dialog, adjust column width by dragging with 

pressed mouse button in the column header), imported, modified, dif-

ferently generated, ... tables can be displayed immediately. The results 

of working with tables can be checked immediately - a very important 

feature for interactive working with data. 

The DataSprite therefore contains a data type table that corresponds 

to such a two-dimensional table. 

A new empty table is simply an empty list. You can add rows, columns, 

and column headings to it, and you can delete them. If necessary, you 

can create a two-column table directly from random numbers (see 

above). In many cases myData is preset as the table to be edited. You 

can overwrite this entry by inserting a table variable. 

If you need a real copy, i.e. data without references to other data, you 

can do this with copy of table <tablename>. You can also read out 

individual rows or columns of a table.  

With single table columns you can also do some things: they can be 

normalized by dividing all entries by the mean value, you can sort them 

ascending or descending and calculate minimum, maximum, number, 

sum, mean, median, variance and standard deviation of the table 

values quickly. 

If you need random pairs scattering around a given function graph, you 

can use the block <n> random points near <operator> between 

<xmin> and <xmax>. 
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The references between several table 

columns of course are also of interest. The 

value ranges, the covariance and the 

correlation can be calculated for two table 

columns. Some standard values can be 

grouped according to the entries in another 

column and table rows with predefined 

properties can be selected. 

 

 

Example: A table with 100 rows and 10 columns is filled with random numbers. 

Afterwards, it should be determined between which columns the highest 

correlation exists. 

 

 

 

 

 

  

 

 

 

 

 

 

If necessary, convolution can be applied to image data using ker-

nels, data rows can be compressed, and the nearest neighbors of 

a new data tuple can be determined (kNN). 
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4.9 Working with DataSprite operators 

Machine learning often requires the use of linear algebra methods. Its 

basic elements include scalars ("numbers"), vectors and matrices. The last 

two can be generated quickly with random contents: new <n>-dim vec-

tor returns a vector of the given length and new <n>x<m>-matrix works 

accordingly for matrices. With transpose <data> vectors and matrices 

can be transposed, is <data> a ... checkes, whether the given data type 

has the correct structure. 

 

 Operations between scalars, vectors and matrices are 

performed by the two blocks – if possible. 

<operand> <operator> vec <data>   bzw.  

matrix/vec <op1><operator>matrix/vec <op2>  

 

Example: cross product of two vectors 

 

 

 

 

 

 

 

Example: product of matrix and vector 
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The following operators are more specific: 

polynom<poly>(<value>) calculates the value of a polynomial 

for the specified value according to the Horner scheme, where 

a polynomial is described by a list of its coefficients, starting 

with the highest. The polynomial 𝑥2 − 2 ∗ 𝑥 + 5 would thus be 

represented by the list                     .  

Affine transformations on images are performed using the block 

affine transformation of <imagedata><width><height> by <points1>→ <points2>. 

Example: Mirroring an image on the vertical 

 

 

 

 

 

Linear systems of equations can be solved with solve <matrix>*x=<vector>. 

An application is polynomial interpolation  

polynomial interpolation for <table>,  

where a polynomial is calculated by n points. 

Example: Curve through n points 

 We create some random points around a 

parabola and display the result. 
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Since we obviously can't get any further with a regression line, we click three points in this 

set of points. After the third point we calculate an interpolation polynomial and draw it in 

the diagram. This requires two coordinate transformations. 

 

 

The last blocks of the operator palette round a number to the specified 

number of digits, which would be helpful, for example, when improving the 

diagram display, and provide random numbers between 0 and 1 in full length. 

The last block converts a list of texts into a string with given partial lengths. 

This allows, for example, the column headings of a table to be quickly 

converted into axis labels of a diagram.  
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5 Applications of the DataSprite 

5.1 Under- and Overfitting 

Machine learning uses training data to adjust the parameters of a function so that other 

values are well predicted - if all goes well. You build a forecasting tool, a kind of "telescope" 

for data. 

If the training data is reproduced well by the function, this does not mean that this also 

applies to other data. It depends very much on the type of function that is created. As 

application we choose the last example: the polynomial interpolation.  

The task is: Using training data, the coefficients of a polynomial are adjusted in such a way 

that OTHER data are predicted as well as possible. 

First of all we want to generate some data to calculate an interpolation polynomial. To 

avoid having to start over and over again, we write a reporter who calculates a table with 

n data of any function. 

 

 

 

 

 

 

 

 

 We use this to generate the training data, which we also display immediately. 
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First of all we try a regression line. 

 

That actually looks quite nice, but on the sides it does not fit 

so well. 

 

So, we'll try a polynomial interpolation. 

First of all we choose three random pairs from the training 

data, determine the interpolation polynomial and draw it. 

Because we want to experiment further, we generalize the 

solution to a polynomial by n points. We hope that every-

thing goes well with the selection! The results depend on 

which points were wiped out. Enclosed a bad and a quite 

good result. 

Now we're getting brave! Instead of three points we choose 

5. After all, we want to do a good job! That works great up to 

the right edge, and then - opps! 

 



5 Applications of the DataSprite            24 

 

  

 

Maybe we just need to take more points. Let's try it with 

10. The polynomial runs through more points, but at the 

edges it "runs away". 

 

 

 

 

 

 Well, then, with all the points!  

One can see that with increasing degree of the polynomial 

more training data lies directly on the graph, but that in 

between by the wild oscillations of the polynomial only 

senseless values are "predicted".  

So, the quality of what we learn depends very much on 

how we deal with deviations. We have to decide which inaccuracies can be tolerated in 

detail so that the overall forecast is reliable. If the degree of the polynomial is too small, 

we speak of underfitting, if it is too high, of overfitting. 

 

Tasks: 

1. Discuss different ways to determine a "good" degree of interpolation polynomial 

(i.e. its highest power). 

2. Formulate your results so precisely that they can be realized as scripts. 

3. Test the scripts on different data sets. 
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5.2 New York Citibike Tripdata [NYcitibike] 

Even in New York, cycling has become "hip" and borrow-

ing data can be loaded as CSV files. We do so and load 

the almost 600,000 data records from June 30, 2013 

into a table. We split the column headings to get a pure 

data table.  

What did we actually find there? 

The data legend provides the interpretation for the data: Trip Duration (seconds), Start 
Time and Date, Stop Time and Date, Start Station Name, End Station Name, Station ID, 
Station Lat/Long, Bike ID, User Type (Customer = 24-hour pass or 3-day pass user; Sub-
scriber = Annual Member), Gender (Zero=unknown; 1=male; 2=female), Year of Birth 

Since the geographical longitude and latitude of the 

rental stations are given, it is a good idea to use the 

Word Map Library from Snap!.  We write a small block, 

which shows the surroundings of a rental station as a 

map.  

Let's see where you can rent bicycles. For the overview 

we extract the rental stations from the complete list, 

e.g. by grouping them according to the name of the 

starting station (column 5) and selecting only this 

column as the result.  

We get 337 stations after all. 

 Then we collect the data of a station …  

… and build the coordinate list of the stations.  
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With these data we can send the sprite to the 

individual positions, where we leave circles with the 

stamp-block. 

 

 At least in Midtown Manhattan, we don't have to worry about finding a rental station! 

Now we want to have a closer look at the rental station 

Broadway - corner 41 Street (No. 55). To do this, we look 

for all records from the list that start or end at this station. 

That's 5005 events that day. Times are entered in this list 

together with the (same) date. We can throw this out 

(split with " ") and reduce it to the hour (split with ":"). 

We then have a numerical scale with the unit "hour". 

Now we can see what's going on at the station during the 

individual hours of the day. 

 And we can display this graphically as usual. 
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A few streets down the road, it looks similar. 

Is that a general pattern? 

 

 

 

 

 

 

 

 

Well, at Central Park the people get up later and the 

tourists are not there yet. But the museums always 

close at the same time. 

 

 

 

 

 

 

 

 

What can our programs learn from these data?  

• We could, for example, predict from the usual departures and arrivals as well as 

from the actual stock whether sufficient bicycles will be returned in time at a sta-

tion or whether it would be better to transport some of them there. 

• We could determine which accus are needed for eBikes from the average path 

lengths. 

• We could determine whether women or men would rather borrow the bikes at a 

certain time of day and then make sure that the offer is right. We could do the 

appropriate thing for the age of the borrower. 

• We could determine the borrowing data per bike and predict when repairs will be 

due. We could also do this, for example, depending on the location of the stands. 

• We could try to generalize distributions from some stations in such a way that 

forecasts for others can be derived from them. So, when the museums close at 

Central Park, the program can "learn" from the old data in which districts the 

bikes will presumably be delivered and warn if there are not enough free slots 

available.  

etc. 
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Tasks: 

1. Break down the activities of the stations according to arrivals and departures. 

2. Write a forecast function that warns if there is a risk of a lack of wheels at a station 

in the next few hours. 

3. For certain stations, display the connections to the most selected delivery stations 

graphically on the map using direct lines. Select the thickness of the lines accord-

ing to the number of borrowing operations and the colors depending on the sta-

tion. Are clusters formed? 

4. Find out with the help of correlations-block whether there are correlations in 

rental behavior (e.g. with regard to times of day, location, ...) with gender, age, 

status of borrowers. You may have to replace the data with numeric data before-

hand - similar to the times. Discuss possible consequences. 

5. For a small section of Midtown (where everything is beautifully right-angled), find 

the coordinates of the street corners. Then develop a router that shows the short-

est route to the nearest Citibike station. 

6. The rental numbers depending on the time of day show quite a difference in dif-

ferent areas of Manhattan. Systematically examine similarities and differences 

and try to explain the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



5 Applications of the DataSprite            29 

 

 

5.3 Star spectra [UniGOE] 

Stars shine in different colors because they have different temperatures. In addition, the 

spectra differ in their absorption lines. We want to investigate this in more detail. 

We get some star spectra (source: [UniGOE]) and save them as a 

text file. We read in such a file. In the first line we see the star 

name after the column captions. We isolate it and store it in the 

variable starname. 

 

 

We know the star's name now. If you search the Internet for it, 

you will find a wealth of information about it. For repeating the 

loading process with other data, we encapsulate it in a separate 

block. After its execution, the actual star data are available as a 

table. 

 

 

 

 

 

 

 With these data you can quickly create a diagram. 

One recognizes well the falling course with some strik-

ing absorption lines. But does one need all spectral 

data for this insight?  
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Perhaps it is sufficient to reduce the amount of data by 

averaging. We introduce a compression factor 

compression rate and add the script before creating 

the diagram.  

Factor 5 doesn't change much. So, let's try again. 

 

 

 

 

 

 

It can be seen that the temperature-dependent course of the spectrum is hardly changed. 

Only the absorption lines are lost. Thus the type of the spectrum should be described by 

an interpolation polynomial e.g. 4th degree. 

 

This also works perfectly! If we also record the polynomial parameters during the exami-

nation, we can easily distinguish the star types on the basis of the parameter ranges.  
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The program can "learn" which parameter intervals belong to which star classes on the 

basis of the old data. If you enter the data of a new star, it determines the coefficients of 

the polynomial and then gives a well-founded prognosis of what kind of star it might be. 

 

Tasks: 

1. Set up an interpolation polynomial of the lowest possible degree for the uncom-

pressed spectrum data. Which points should be selected for this?  Are there any 

differences between these polynomials and the results of the method shown 

above? 

2. Develop a script that assigns an unknown spectrum to one of the previously oc-

curring types. 

3. Develop a method to examine the most prominent absorption lines more closely. 

Enlarge them for stars of the same class and try to determine differences "auto-

matically". Discuss your ideas before realization.  
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5.4 Period of a Cepheid [HOU] 

Cepheids are stars whose brightness fluctuates periodically. Since their luminosity depends 

directly on the period of the fluctuation, they serve as "standard candles" for distance 

measurement in space. We want to measure this period. For this we get some pictures of 

a Cepheid, which were taken on different days (Source: [HOU]). The example is used to 

explain DataSprite image operations. 

 

You can see that the pictures have very different quality. On some you can hardly see the 

Cepheid, the star next to the bigger star. Sometimes the background is brighter, sometimes 

darker. So, we have some tasks: 

• Load the images, set a view that shows both stars well. 

• Subtract the background radiation of the image, invert if necessary. 

• Measure the brightness of a star. 

• Display the results and find out the period. 

And how do you determine the brightness of a Cepheid? It is calculated relative to an un-

changeable star in the vicinity. So, in each image two brightness values have to be meas-

ured. 

As in the other examples, an image is loaded into 

DataSprite and displayed. Minimum and maximum of 

the displayed values are determined experimentally in 

such a way that stars are clearly visible. (Remember: the 

actual image values are not changed by this.) If necessary, 

the image is inverted. 
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The radiation background is subtracted by simply subtracting the smallest image value 

from all of them. 

We process the mouse clicks to determine the 

brightness by setting a variable clicked to false. If the 

image is clicked, it gets the value true and the clicked 

image coordinates are assigned to the variable 

clickresult. In the script, the program waits until data is 

available using the command. 

With these aids, the measurement process can be 

summarized in a separate block. The results are assigned 

to a result variable. This will be evaluated later.  

 

 

 

 

 

 

 

 

 

 

The period will therefore be about 9 days. 
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Tasks: 

1. Place a nice smooth sine wave (or similar) through the data points. Experiment a 

bit. Does this make the period more accurate? 

2. Develop a script that allows you to draw lines on the image that should correspond 

to the period duration. The period duration is then determined from the mean 

length of these lines. 

3. On some pictures the Cepheid is hardly to be seen. Develop a script that shows 

where stars are in the image, perhaps by a cross. What is a (pictured) star anyway? 

The vertical line on the pictures is probably not! 
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5.5 Search for a Supernova [HOU] 

A new supernova is not so easy to discover between the many other stars. But you can 

identify candidates by subtracting old images of a sky from new ones. If a bright (or dark) 

spot remains, you should take a closer look at this area (source: [HOU]). The example again 

explains the use of DataSprite image operations. 

So we get ourselves four pictures taken on different days, of course with different 

exposures, different background radiation, ... and also some other quirks. 

In order to see anything at all on the pictures, they were 

first "normalized", i.e. the background was subtracted 

and the rest of the picture values were mapped to the 

range from 0 to 1000. But this does not give them the 

same overall brightness, as the result depends strongly 

on the highest image values. 
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If we now simply subtract one image from the other, then 

we get a three-dimensional result with some "Ying-Yang 

effects" where bright image areas did not fit together 

completely. We can use the vector arithmetic block for 

this operation because FITS data are a simple list.  

Therefore we carry out an affine transformation with one 

image by clicking and saving three corresponding points 

first on one image, then on the other.  

 

 

 

 

 

The result: 
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We'll subtract this picture from the first. 

Well, it goes better too! 

But at least we found a new shining spot in the 

galaxy! (It's black here because we took the 

picture with the supernova candidate last. But 

we didn't know that before.      ) 

 

 

 

 

 

 

 

 

 

Tasks: 

1. Find images of the same sky area with and without Nova and process them as 

shown. 

2. Automate parts of the search as much as possible. Discuss the difficulties.  

3. Can you improve the accuracy of the "handiwork" in supernova search, e.g. by 

focusing the clicked stars better? Try it! 
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5.6 Classification of stars according to the kNN method 

In the Hertzsprung-Russel diagram (see Wikipedia) the 

luminosity of stars is plotted above their star class. The 

result is a kind of line from top left to bottom right, the 

"main sequence". On this line stars like the sun are mostly 

located.  Right above the main row we find the red giants, 

left below the main row the white dwarfs. That’s enough 

for first. (Picture source: [HR]) 

We want to classify new stars in this diagram using the k-

next neighbor (kNN) method: As training data we generate 

a list of stars with their coordinates (simply as image coor-

dinates in the diagram) and their type. If we want to classify 

a new star, we determine its position in the diagram and 

look for the nearest k (e.g. k=5) neighbors.  Then we deter-

mine the most frequently appearing star type in this list. 

We assign it to the new star. 

 

First of all we need a picture of the Hertzsprung-Russel diagram ([HR]). We import it into 

Snap! as a costume and generate the required data from it.  

 

 

 We generate the training data by 

specifying a star type and then 

clicking on some points in the 

diagram that correspond to this 

type. 

 

 

 

Then we can classify new stars by clicking on them (here) 

and labeling them. 
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We set some properties for the representation ... 

...and draw a circle at the location of the star. 

Then we determine the five nearest neighbors and 

the number of occurrences of their type. In the re-

sult we delete the headings and sort the list in de-

scending order. The type of the new star is then the 

first element in the first line. We write this next to 

the star. 

 

The result: 
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6 Hints  

The examples were largely chosen from astrophysics because the DataSpriteLibrary will 

be used in this area in the next semester. But the library operations are of course not lim-

ited to this area. 

Machine learning consists to a large extent of the preparation of data - regardless of 

whether it is table data or images. The actual learning processes of the machines then 

consist of the parameter adjustments resulting from the data. Since both can be easily 

visualized, there is a broad field for beginning programmers with many transitions to the 

field of "informatics and society". 

Examples of how to use the operations of the DataSpriteLibrary, especially the convolu-

tion using a kernel, can be found in [DBV]. 
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